·您现在的位置: 云翼网络 >> 文章中心 >> 网站建设 >> 网站建设问答 >> 网站分析中数据的统计学显著性检验

网站分析中数据的统计学显著性检验

作者:佚名      网站建设问答编辑:admin      更新时间:2022-07-23

在网站分析中,经常会做网站优化测试,就会比较不同方案的转换率,例如跳出率,订单购买率,按钮点击率等;也会记录访客或者客户的详细数据表现。但很多时候差异都很小,究竟是保持现状还是全面采用新方案的内容,很难有结论,于是两者差异在统计学的意义是否显著就变得很重要。

这篇文章主要讲解两种检验数据的方法:分别是在Excel中使用已经写好函数的数据显著性计算器,和使用SPSS对详细客户数据进行显著性检验。

一、Excel-数据显著性计算器

假设有下列的数据: 

那么我们可以使用Avinash Kaushik介绍的Excel-数据显著性计算器来检验,详细请查看http://www.kaushik.net/avinash/excellent-analytics-tip1-statistical-significance/

Excel文件可从此处下载:http://vdisk.weibo.com/s/cz9E6

输入数据后计算得知(Number of Test Participants是分母,Number of Conversions是分子),差异是显著的,因为方框中显示了”Yes”

数据显著性

以上方法的原理是两组数据的差异超过了数据置信区间的话,那么就会出现数据显著性差异的结果。

以上的方法适用于简单的两个比率之间的对比,接下来要说说高级点的内容,SPSS中的假设检验问题来比较两个样本的均值。

二、两独立样本T检验

SPSS中比较均值的方法包括: 

在介绍两独立样本T检验之前,先说下均值的比较情况,由浅入深。

1.均值的检验

假设检验的步骤一般分为以下几步:

1)确定原假设和备选假设(原假设就的意思是对总体的比例、均值或分布做出某种假设)

2)选择检验统计量

3)计算检验统计量观测值发生的概率,P值

4)给定显著性水平α, 如果P<α, 即小概率事件发生,即原假设发生的概率很小,那么推翻原假设,如果P>α, 那么原假设成立。

假设有以下两种情况:

1)工厂的质量管理员说:产品缺陷率只有1/1000, 然后你开始抽查,抽了5件,就有2件是有问题的,那么问题就大单了。

因为1000件中最大缺陷数是1件,现在有2件,也就是概率极小的事情发生。

2)工厂的质量管理员说:产品缺陷率只有1/100,然后你开始抽查,抽了5件,就有2件是有问题的,那么问题也挺大单。

1000件中最大缺陷数是10,现在有2件,接下来还有995件要查,那么有两种可能:

*产品缺陷率远远高于1%,质量管理员忽悠人;

*碰巧抽到有缺陷的产品,接下来的995件很少有缺陷的了。

概率计算:

概率计算

原假设:也就是假设产品缺陷率是1/100, 前面抽了5件,就有2件次品的概率是0.088%;

抽5件中2件,后续抽查产品缺陷率小于1/100的的概率为0.088%;抽5件中2件,后续抽查产品缺陷率大于1/100的的概率为99.912%,即原假设发生的概率《α,如果α为5%,那么0.088%《5%, 即检验中的小概率事件发生,原本不太可能的事情发生了,那么推翻原假设。

注意:数据案例来自李洪成老师的SPSS资料