虽然在PC机中,串口渐行渐远,但是在嵌入式领域,串口仍可以说是如日中天,因为它造价低廉、并且编程也比较方便,在没有显示屏或输入设备的系统上,串口更是不可或缺,和超级终端一道,共同解决了信息显示和输入问题。
经过这几天的努力,在Cortex-M3平台上的.Net Micro Framework的NativeSample移植工作就要一个段落了,目前已实现启动代码、SRAM、时钟(RCC)、中断(NVIC)、SysTick、GPIO、串口、NandFlash(FMSC)等相关功能,这些代码可以说是使TinyClr正常工作的最小集合,有了这些工作做铺垫,下一步就可以移植TinyClr了,如果我们采用的Cortex-M3开发板有2M以上的RAM,那么我们的工作到这一步也许是已经完成90%上了,但是由于资源有限,下一步调试必须为Flash版本,所以未知的工作将很多,并且调试也将变得困难,不管怎么我们的.Net Micro Framework PortingKit之旅还将继续,不过,说心里话,由零开始完成这些工作,虽然艰苦,但是收获颇丰,对ARM开发(尤其是Cortex-M3)的理解更是上了一个层次。
好了,下面我们要说一下串口驱动的开发。
和GPIO开发一样,我们仍需在CortexM3.h中编写串口相关的寄存器代码。
struct CortexM3_Usart
{
static const UINT32 c_MAX_BAUDRATE = 45000000;
static const UINT32 c_MIN_BAUDRATE = 1200;
static const UINT32 c_Base1 = 0x40013800;
static const UINT32 c_Base2 = 0x40004400;
static const UINT32 c_Base3 = 0x40004800;
/****/ volatile UINT16 SR;
static const UINT16 SR_TXE=((UINT16)0x0080);
static const UINT16 SR_TC=((UINT16)0x0040);
static const UINT16 SR_RXNE=((UINT16)0x0020);
UINT16 RESERVED0;
/****/ volatile UINT16 DR;
UINT16 RESERVED1;
/****/ volatile UINT16 BRR;
UINT16 RESERVED2;
/****/ volatile UINT16 CR1;
static const UINT16 CR1_UE_Set = ((UINT16)0x2000); //USART Enable Mask
static const UINT16 CR1_UE_Reset = ((UINT16)0xDFFF); //USART Disable Mask
static const UINT16 CR1_Parity_No = ((UINT16)0x0000);
static const UINT16 CR1_Parity_Even = ((UINT16)0x0400);
static const UINT16 CR1_Parity_Odd = ((UINT16)0x0600);
static const UINT16 CR1_DataBit_8 = ((UINT16)0x0000);
static const UINT16 CR1_DataBit_9 = ((UINT16)0x1000);
static const UINT16 CR1_Mode_Rx = ((UINT16)0x0004);
static const UINT16 CR1_Mode_Tx = ((UINT16)0x0008);
static const UINT16 CR1_CLEAR_Mask = ((UINT16)0xE9F3);
static const UINT16 CR1_PEIE = ((UINT16)0x0100);
static const UINT16 CR1_TXEIE = ((UINT16)0x0080);
static const UINT16 CR1_TCIE = ((UINT16)0x0040);
static const UINT16 CR1_RXNEIE = ((UINT16)0x0020);
UINT16 RESERVED3;
/****/ volatile UINT16 CR2;
static const UINT16 CR2_StopBits_1 = ((UINT16)0x0000);
static const UINT16 CR2_StopBits_0_5 = ((UINT16)0x1000);
static const UINT16 CR2_StopBits_2 = ((UINT16)0x2000);
static const UINT16 CR2_StopBits_1_5 = ((UINT16)0x3000);
static const UINT16 CR2_StopBits_Mask= ((UINT16)0xCFFF); /* USART CR2 STOP Bits Mask */
UINT16 RESERVED4;
/****/ volatile UINT16 CR3;
static const UINT16 CR3_HardwareFlowControl_None = ((UINT16)0x0000);
static const UINT16 CR3_HardwareFlowControl_RTS = ((UINT16)0x0100);
static const UINT16 CR3_HardwareFlowControl_CTS = ((UINT16)0x0200);
static const UINT16 CR3_HardwareFlowControl_RTS_CTS = ((UINT16)0x0300);
static const UINT16 CR3_HardwareFlowControl_Mask = ((UINT16)0xFCFF);
UINT16 RESERVED5;
/****/ volatile UINT16 GTPR;
UINT16 RESERVED6;
};
有了上述代码,我们便可以方便的操作串口寄存器了。
串口的初始化要做如下初始化工作(STM3210E开发板有三个串口,我们以串口1为例来讲述):
1、 开启串口时钟
UsartId = CortexM3_NVIC::c_IRQ_Index_USART1;
RCC.APB2ENR |= CortexM3_RCC::APB2_GPIOA | CortexM3_RCC::APB2_USART1;
2、 激活中断
if(!CPU_INTC_ActivateInterruptEx( UsartId, (UINT32)(void *)USART1_IRQHandler)) return FALSE;
3、 设置串口参数,如波特率、奇偶校验、数据位、停止位等
略
4、 GPIO重定义
CPU_GPIO_DisablePin(GPIO_Driver::PA9,RESISTOR_DISABLED,FALSE,GPIO_ALT_MODE_1);
CPU_GPIO_DisablePin(GPIO_Driver::PA10,RESISTOR_DISABLED,TRUE,GPIO_ALT_MODE_2);
5、 串口使能
Usart.CR1 |= CortexM3_Usart::CR1_UE_Set;
在中断函数中完成数据的发送和接收:
void CortexM3_USART_Driver::ISR( void* param )
{
UINT32 comPort = (UINT32)param;
CortexM3_Usart &Usart=CortexM3::Usart(comPort);
char c;
UINT32 Status;
Status = Usart.SR;
if(Status & CortexM3_Usart::SR_RXNE)
{
c = Usart.DR;
USART_AddCharToRxBuffer( comPort, c );
Events_Set( SYSTEM_EVENT_FLAG_COM_IN );
}
if(Status & CortexM3_Usart::SR_TC)
{
if(0 == (c_RefFlagTx & g_CortexM3_USART_Driver.m_RefFlags[comPort]))
{
return;
}
if(USART_RemoveCharFromTxBuffer( comPort, c ))
{
WriteCharToTxBuffer( comPort, c );
}
else
{
// disable further Tx interrupts since we are level triggered
TxBufferEmptyInterruptEnable( comPort, FALSE );
}
Events_Set( SYSTEM_EVENT_FLAG_COM_OUT );
}
}
核心代码也就是上述介绍的相关内容,下面我们在NativeSample中写一个串口测试代码:
void applicationEntryPoint()
{
while(TRUE)
{
if(Events_WaitForEvents(SYSTEM_EVENT_FLAG_COM_IN,100))
{
Events_Clear(SYSTEM_EVENT_FLAG_COM_IN);
char bytData[512];
int Size=USART_BytesInBuffer(0,TRUE);
USART_Read(0,bytData,Size);
for(int i=0;i<Size;i++)
debug_printf("%c",bytData[i]);
}
debug_printf("Hello Micro Framework!!!\r\n");
}
}