母婴相对一般的电子商务网站有一些特点:
第一个特点是商品周期短,在母婴网站上的商品,在线的时间不会超过5-7天。
第二个是用户需求的变化快,在母婴行业,可能是用户的需求变化最快的领域,比如是用户处在怀孕当中,关心的是孕妈的一些问题,几个月以后,随着宝宝的落地,就会准备一些纸尿裤和奶粉,而且随着宝宝的长大,纸尿裤和奶粉的类型也会变化。
第三个是移动化,一般有90%的成交是来自移动端的。
手机端的屏幕非常的小,可以给客户的信息非常的有限,所以需要我们帮助用户找他有兴趣的东西,大数据平台既要为网站的活动提供大数据的支撑,还需要实现个性化的推荐,搜集用户的行为,全面的了解用户的购物意图,推荐用户感兴趣的商品。
下图是整个大数据平台的架构图,最下面的是我们的数据收集,后面会有介绍。计算层包括了离线计算和实时计算,以后搜索引擎,在算法层有协同过滤,分类产生一些用品的商品特征,以后排序的模型。在业务层的话,业务的类型是丰富多彩的,我们会融入一些运营的规则进行调整,包括一些个性化的调整和推荐,以及营销。
BI 层的应用有面向运营的,面向商家的,会涉及用户的浏览日志,在PC上的一些行为,比如是用户浏览了一些什么商品,点击了一些什么商品,对数据的消费也有二种方式,一种是实时消费,一种是离线消费,这种方式会在每天的凌晨进行一次统计,会有一天的延时,比如是 今天上线的活动,可能明天才知道这个活动的效果,因为我们研发了一套实时的数据研发系统,因此任何需要实时消费的数据报告,只要订阅就可以了。
分布式的调度是整个大数据平台的核心,在大数据平台处于一个指挥的作用,比如是任务管理,任务监控和任务日志,我们研发了一套分布式的系统,里面有二种角色。Master主要是负责任务的管理,任务的分配,任务的执行,任何的Master挂掉,都不会影响我们系统的运营。
在整个大数据平台上,很大一部分是推荐的产品,第一类是个性化的排序,个性化排序的特点是在侯选级的情况下,根据用户的不同的购物的用途,为用户做个性化的排序,用户到达我们网站的时候,我们会推荐所有在线的品牌特卖,比如是一天500个,根据用户的购物的意图,做个性化的数据。
第二个是关联推荐,比如是推荐和这个商品相似的商品,购买的商品可以推荐搭配的商品。第三个是个性化推荐,给指定的用户推荐他感兴趣的商品,比如是在用户的资料的页面,我们会直接给用户推荐他感兴趣的商品。
除了这三种推荐的形式,还包括通过个性化的短信,个性化的推送,引导用户到我们的平台,我们会给用户推荐感兴趣品牌,我们会对商品进行个性化的排序,还会有相似商品的推荐,用户交易的环节,还会推荐和这个商品搭配的商品,包括周期购买预测等。
为什么会有这种推荐,可以从二个方面来看,一个是我们网站本身是一个轻搜索重推荐的模式,在我们的网站上搜索的功能是非常的弱化的,我们最近的上线的搜索 框也很不明显,这是一个推荐商品非常重要的渠道,从推荐的本身来说,也可以看到它的三个方面价值,提升用户的购物的体验。帮助商家找到感兴趣的用户,也可 以提高他的销售额,对整个平台来说,只有服务好用户和商家,才能得到一个比较好的持续的发展。